Dividing unsigned 8-bit numbers

Author: Wojciech Muła
Added on:2024-12-21
Updated on:2024-12-22 (fixed a typo, thanks John Rinehart, clarify introduction based on HN comments, add more AVX-512 variants); 2024-12-28 (add see also section)

Contents

Introduction

Division is quite an expensive operation. For instance, latency of the 32-bit division varies between 10 and 15 cycles on the Cannon Lake CPU, and for Zen4 this range is from 9 to 14 cycles. The latency of 32-bit multiplication is 3 or 4 cycles on both CPU models.

None of commonly used SIMD ISAs (SSE, AVX, AVX-512, ARM Neon, ARM SVE) provides the integer division, only RISC-V Vector Extension does. However, all these ISAs have floating point division.

In this text we present two approaches to achieve a SIMD-ized division of 8-bit unsigned numbers:

  1. using floating point division,
  2. using the long division algorithm.

We try to vectorize the following C++ procedure. The procedure cannot assume anything about dividends, especially if they are all equal. Thus, it is not possible to employ division by a constant.

void scalar_div_u8(const uint8_t* a, const uint8_t* b, uint8_t* out, size_t n) {
    for (size_t i=0; i < n; i++) {
        out[i] = a[i] / b[i];
    }
}

Compilers cannot vectorize it. For example GCC 14.1.0 produces the following assembly (stripped from code alignment junk):

2b40:       48 85 c9                test   %rcx,%rcx
2b43:       74 30                   je     2b75 <_Z13scalar_div_u8PKhS0_Phm+0x35>
2b45:       45 31 c0                xor    %r8d,%r8d
2b60:       42 0f b6 04 07          movzbl (%rdi,%r8,1),%eax
2b65:       42 f6 34 06             divb   (%rsi,%r8,1)
2b69:       42 88 04 02             mov    %al,(%rdx,%r8,1)
2b6d:       49 ff c0                inc    %r8
2b70:       4c 39 c1                cmp    %r8,%rcx
2b73:       75 eb                   jne    2b60 <_Z13scalar_div_u8PKhS0_Phm+0x20>
2b75:       c3                      ret

Floating-point point operations

An 8-bit number can be converted into single precision floating point number without any precision loss.

The generic outline of division consist the following steps:

  1. cast 8-bit dividend and divisor into 32-bit integers,
  2. convert unsigned integers into floating-point numbers,
  3. perform floating-point division,
  4. convert floating-point result into 32-bit integers,
  5. cast back 32-bit integer into 8-bit final result.

Division with rounding

Here is the actual implementation of SSE procedure. Note that we need to explicitly truncate the floating point number before converting back into integer. By default that conversion rounds the argument, so we would get wrong results (off by 1).

  1. Load four 8-bit dividends.

    uint32_t buf_a;
    memcpy(&buf_a, &a[i], 4);
    
  2. And four 8-bit divisors.

    uint32_t buf_b;
    memcpy(&buf_b, &b[i], 4);
    
  3. Transfer them to SSE register and cast to 32-bit numbers.

    const __m128i a_u8  = _mm_cvtsi32_si128(buf_a);
    const __m128i a_u32 = _mm_cvtepu8_epi32(a_u8);
    
    const __m128i b_u8  = _mm_cvtsi32_si128(buf_b);
    const __m128i b_u32 = _mm_cvtepu8_epi32(b_u8);
    
  4. Cast 32-bit integers into floats.

    const __m128  a_f32 = _mm_cvtepi32_ps(a_u32);
    const __m128  b_f32 = _mm_cvtepi32_ps(b_u32);
    
  5. Perform division and then truncation.

    const __m128  c_f32   = _mm_div_ps(a_f32, b_f32);
    const __m128  c_f32_2 = _mm_round_ps(c_f32, _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC);
    
  6. Convert floats back into integers.

    const __m128i c_i32 = _mm_cvtps_epi32(c_f32_2);
    
  7. Cast 32-bit into 8-bit numbers: gather lowest 8-bit numbers into single 32-bit word and save this word to the output array.

    const __m128i c_u8  = _mm_shuffle_epi8(c_i32, _mm_setr_epi8(
        0, 4, 8, 12,
        -1, -1, -1, -1,
        -1, -1, -1, -1,
        -1, -1, -1, -1
    ));
    
    const uint32_t buf = _mm_cvtsi128_si32(c_u8);
    memcpy(&out[i], &buf, 4);
    

Division without rounding

Rounding instruction ROUNDPS has quite big latency, at least on Intel CPUs. On IceLake it is 8 cycles, while Zen4 has only 3 cycles.

We can avoid floating point rounding by multiplying the dividend 256 (shift left by 8 bits) and shifting right by 8 the final result. The shift right can be done at no cost, because we anyway use shuffling to gather individual bytes, so it's only matter of a constant. Shifting left by 8 is suitable only for SSE code — we can use byte shuffle to shift-and-extend integers. In the case of AVX2 code, byte shuffling is done on 128-bit lanes, thus we would need more work to prepare input for that operation.

The SSE procedure is almost the same as in the previous section:

  1. Load four dividends.

    uint32_t buf_a;
    memcpy(&buf_a, &a[i], 4);
    const __m128i a_u8  = _mm_cvtsi32_si128(buf_a);
    
  2. Convert dividend << 8 into 32-bit numbers.

    const __m128i a_u32 = _mm_shuffle_epi8(a_u8, _mm_setr_epi8(
        -1, 0, -1, -1,
        -1, 1, -1, -1,
        -1, 2, -1, -1,
        -1, 3, -1, -1
    ));
    
  3. Load four divisors and convert them to 32-bit numbers.

    uint32_t buf_b;
    memcpy(&buf_b, &b[i], 4);
    const __m128i b_u8  = _mm_cvtsi32_si128(buf_b);
    const __m128i b_u32 = _mm_cvtepu8_epi32(b_u8);
    
  4. Cast all 32-bit integers into floats.

    const __m128  a_f32 = _mm_cvtepi32_ps(a_u32);
    const __m128  b_f32 = _mm_cvtepi32_ps(b_u32);
    
  5. Perform division.

    const __m128  c_f32   = _mm_div_ps(a_f32, b_f32);
    
  6. Convert quotient into 32-bit integers.

    const __m128i c_i32 = _mm_cvtps_epi32(c_f32);
    
  7. Cast quotient >> 8 into 8-bit numbers: gather bit #1 of each 32-bit word.

    const __m128i c_u8  = _mm_shuffle_epi8(c_i32, _mm_setr_epi8(
        0 + 1, 4 + 1, 8 + 1, 12 + 1,
        -1, -1, -1, -1,
        -1, -1, -1, -1,
        -1, -1, -1, -1
    ));
    
    const uint32_t buf = _mm_cvtsi128_si32(c_u8);
    memcpy(&out[i], &buf, 4);
    

Using approximate reciprocal

SSE comes with instruction RCPPS that calculates the approximate inversion of its argument: 1/x. This would allow us to use expression dividendapprox(1/divisor).

The specification says relative error does not exceed 1.5 ⋅ 2 − 12. But for our needs, the absolute error is too big to use the instruction result directly. The following table shows the results for initial x values, for which the error is significant.

However, by trial-and-error search, we found that after multiplying the dividend by value 1.00025, the result of RCPPS can be used. To be precise, any multiplier between 1.00024 and 1.00199 works.

2024-12-21-uint8-division/rcp_diff.png
x 1 / x approx 1 / x error
float hex float hex
1 1.000000 3f800000 0.999756 3f7ff000 0.000244
2 0.500000 3f000000 0.499878 3efff000 0.000122
3 0.333333 3eaaaaab 0.333313 3eaaa800 0.000020
4 0.250000 3e800000 0.249939 3e7ff000 0.000061
5 0.200000 3e4ccccd 0.199951 3e4cc000 0.000049
6 0.166667 3e2aaaab 0.166656 3e2aa800 0.000010
7 0.142857 3e124925 0.142822 3e124000 0.000035
8 0.125000 3e000000 0.124969 3dfff000 0.000031
9 0.111111 3de38e39 0.111084 3de38000 0.000027
10 0.100000 3dcccccd 0.099976 3dccc000 0.000024
11 0.090909 3dba2e8c 0.090897 3dba2800 0.000012
12 0.083333 3daaaaab 0.083328 3daaa800 0.000005
13 0.076923 3d9d89d9 0.076920 3d9d8800 0.000004
14 0.071429 3d924925 0.071411 3d924000 0.000017
15 0.066667 3d888889 0.066650 3d888000 0.000016
16 0.062500 3d800000 0.062485 3d7ff000 0.000015
17 0.058824 3d70f0f1 0.058807 3d70e000 0.000016
18 0.055556 3d638e39 0.055542 3d638000 0.000014
19 0.052632 3d579436 0.052620 3d578800 0.000012
20 0.050000 3d4ccccd 0.049988 3d4cc000 0.000012
...
255 0.003922 3b808081 0.003922 3b808000 0.000000

Long division

The long division algorithm is the one we know from school.

  1. We start with the remainder and quotient equals zero.
  2. Then, in each step, we extend the remainder with the next digit of the dividend, starting from most significant digits.
  3. If the remainder becomes bigger than the divisor, we calculate q := remainder/divisor. This number, a digit, is in range [0, 9] for decimal division, or is either 0 or 1 for binary division.
  4. We decrement remainder by qdivisor.
  5. We prepend the digit q to the quotient.
  6. If there are still digits in dividend, go to point #2.

A nice property of the algorithm is calculating both the quotient and remainder. The cons of algorithm are:

Since we're going to divide 8-bit numbers, it means that the basic step of algorithm has to be repeated eight times. Below is a reference implementation.

uint8_t long_div_u8(uint8_t dividend, uint8_t divisor) {
    uint8_t remainder = 0;
    uint8_t quotient = 0;

    for (int i=7; i >= 0; i--) {
        // make room for i-th bit of dividend at 0-th position
        remainder <<= 1;

        // inject that bit
        remainder |= (dividend >> i) & 1;

        if (remainder >= divisor) {
            // set i-th bit in quotient
            quotient |= 1 << i;

            // adjust remainder
            remainder -= divisor;
        }
    }

    return quotient;
}
dividend:
divisor:
dividend
divisor
reminder
quotient
 

The long division can be also applied to signed integers. We need to calculate the absolute values of dividend & divisor and perform the algorithm. Then quotient has to be negated if the operands have different signs.

Since 8-bit signed integers have range − 128…127, the range of their absolute values is 0…128. It means the long division operands still have eight bits.

Vectorization

The algorithm consist the following operations:

  1. extract i-th bit from the divisor and shift it into the remainder:

    remainder = (remainder << 1) | ((dividend >> i) & 1);
    
  2. compare the remainder and divisor;

  3. conditionally set i-th bit in the quotient and adjust the remainder:

    quotient |= 1 << i;
    remainder -= divisor;
    

SSE & AVX2

Step 1: Updating remainder

In SSE & AVX2 it's easy to copy the most significant bit to the least significant bit #0. We compare the number interpreted as a signed one with zero. It yields either 0x00 or 0xff ( − 1).

We can rewrite the main loop to shift the dividend left by 1, thus we'll be able to copy all its bits using that technique.

Shifting left by 1 is simple addition, which is a really fast operation.

Step 2: Comparison

There's no unsigned comparison in SSE nor AVX2, only signed one. It is possible to compare two unsigned numbers with a signed comparison: we need to negate their most significant bits. This is done by XOR-ing with 0x80.

Note that we need to perform xor once for the divisor, and eight times for the remainder.

Step 3: Conditional operations

Once we get a mask from the comparison, we can easily compute masked operations.

In fact we need unconditionally shift the quotient by 1 and then conditionally set the i-th bit.

Implementation (SSE)

The following C code shows all the implementation details.

uint8_t long_div_u8(uint8_t dividend, uint8_t divisor) {
    uint8_t remainder = 0;
    uint8_t quotient = 0;
    uint8_t bit = 0x80;

    uint8_t divisor_xored = divisor ^ 0x80;

    for (int i=7; i >= 0; i--) {

        // msb => 0 or -1
        const uint8_t msb = (int8_t)dividend < 0 ? 0xff : 0x00;

        // inject bit
        remainder -= msb;

        if ((int8_t)(remainder ^ 0x80) >= (int8_t)(divisor_xored) {
            // set i-th bit in quotient
            quotient |= bit;

            // adjust remainder
            remainder -= divisor;
        }

        bit >>= 1;
        dividend <<= 1;
        // make room for i-th bit of dividend at 0-th position
        remainder <<= 1;
    }

    return quotient;
}

The actual SSE implementation.

void sse_long_div_u8(const uint8_t* A, const uint8_t* B, uint8_t* C, size_t n) {
    const __m128i msb  = _mm_set1_epi8(int8_t(0x80));
    const __m128i zero = _mm_set1_epi8(0x00);

    for (size_t i=0; i < n; i += 16) {
        __m128i dividend = _mm_loadu_si128((__m128i*)(&A[i]));

        const __m128i divisor = _mm_loadu_si128((__m128i*)(&B[i]));
        __m128i divisor_xored = _mm_xor_si128(divisor, msb);

        __m128i bit      = msb;
        __m128i remainder = _mm_set1_epi16(0);
        __m128i quotient = _mm_set1_epi16(0);
        for (int j=0; j < 8; j++) {
            // copy msb of dividend into remainder
            const __m128i t0 = _mm_cmplt_epi8(dividend, zero);
            remainder = _mm_sub_epi8(remainder, t0);

            // unsigned comparison of divisor and remainder
            const __m128i remainder_xored = _mm_xor_si128(remainder, msb);
            const __m128i gt = _mm_cmpgt_epi8(divisor_xored, remainder_xored);

            // derive condition subtract and quotient bit
            const __m128i cond_divisor      = _mm_andnot_si128(gt, divisor);
            const __m128i cond_quotient_bit = _mm_andnot_si128(gt, bit);

            // conditionally update remainder and quotient
            remainder = _mm_sub_epi16(remainder, cond_divisor);
            quotient = _mm_or_si128(quotient, cond_quotient_bit);

            // next bit for quotient
            bit = _mm_srli_epi32(bit, 1);

            // put the next bit from dividend to MSB
            dividend = _mm_add_epi8(dividend, dividend);

            // make room for bit from dividend
            remainder = _mm_add_epi32(remainder, remainder);
        }

        _mm_storeu_si128((__m128i*)(&C[i]), quotient);
    }
}

AVX-512

Step 1: Updating remainder

Unlike SSE/AVX2 code it's easier to actually perform shift right to place i-th bit at position zero. Then isolating the least significant bit and merging it with quotient can be expressed as a single ternary operation.

remainder <<= 1;
t0         = divisor >> i;
remainder   = remainder | (t0 & 1); // ternary operation

Step 2: Comparison

AVX512 supports unsigned byte comparison, and returns a mask.

Step 3: Conditional operations

This is straightforward use of masked operations.

Implementation

The actual AVX512 implementation is shown below. Unlike SSE code, the inner loop is manually unrolled. Also, there's no explicitly use of the ternary logic intrinsic function — but examining the assembly code reveals that a compiler nicely fuses binary operation.

void avx512_long_div_u8(const uint8_t* A, const uint8_t* B, uint8_t* C, size_t n) {
    const __m512i one = _mm512_set1_epi8(1);

    for (size_t i=0; i < n; i += 64) {
        const __m512i dividend = _mm512_loadu_si512((const __m512*)(&A[i]));
        const __m512i divisor  = _mm512_loadu_si512((const __m512*)(&B[i]));

        const __m512i dividend_bit7 = _mm512_and_epi32(_mm512_srli_epi32(dividend, 7), one);
        const __m512i dividend_bit6 = _mm512_and_epi32(_mm512_srli_epi32(dividend, 6), one);
        const __m512i dividend_bit5 = _mm512_and_epi32(_mm512_srli_epi32(dividend, 5), one);
        const __m512i dividend_bit4 = _mm512_and_epi32(_mm512_srli_epi32(dividend, 4), one);
        const __m512i dividend_bit3 = _mm512_and_epi32(_mm512_srli_epi32(dividend, 3), one);
        const __m512i dividend_bit2 = _mm512_and_epi32(_mm512_srli_epi32(dividend, 2), one);
        const __m512i dividend_bit1 = _mm512_and_epi32(_mm512_srli_epi32(dividend, 1), one);
        const __m512i dividend_bit0 = _mm512_and_epi32(_mm512_srli_epi32(dividend, 0), one);

        __m512i quotient = _mm512_set1_epi32(0);
        __m512i remainder = dividend_bit7;

        {
            const __mmask64 ge = _mm512_cmpge_epu8_mask(remainder, divisor);
            remainder = _mm512_mask_sub_epi8(remainder, ge, remainder, divisor);
            quotient = _mm512_mask_add_epi8(quotient, ge, quotient, one);
        }

        remainder = _mm512_add_epi32(remainder, remainder);
        remainder = _mm512_or_epi32(remainder, dividend_bit6);

        {
            const __mmask64 ge = _mm512_cmpge_epu8_mask(remainder, divisor);
            remainder = _mm512_mask_sub_epi8(remainder, ge, remainder, divisor);
            quotient = _mm512_add_epi32(quotient, quotient);
            quotient = _mm512_mask_add_epi8(quotient, ge, quotient, one);
        }

        remainder = _mm512_add_epi32(remainder, remainder);
        remainder = _mm512_or_epi32(remainder, dividend_bit5);

        {
            const __mmask64 ge = _mm512_cmpge_epu8_mask(remainder, divisor);
            remainder = _mm512_mask_sub_epi8(remainder, ge, remainder, divisor);
            quotient = _mm512_add_epi32(quotient, quotient);
            quotient = _mm512_mask_add_epi8(quotient, ge, quotient, one);
        }

        remainder = _mm512_add_epi32(remainder, remainder);
        remainder = _mm512_or_epi32(remainder, dividend_bit4);

        {
            const __mmask64 ge = _mm512_cmpge_epu8_mask(remainder, divisor);
            remainder = _mm512_mask_sub_epi8(remainder, ge, remainder, divisor);
            quotient = _mm512_add_epi32(quotient, quotient);
            quotient = _mm512_mask_add_epi8(quotient, ge, quotient, one);
        }

        remainder = _mm512_add_epi32(remainder, remainder);
        remainder = _mm512_or_epi32(remainder, dividend_bit3);

        {
            const __mmask64 ge = _mm512_cmpge_epu8_mask(remainder, divisor);
            remainder = _mm512_mask_sub_epi8(remainder, ge, remainder, divisor);
            quotient = _mm512_add_epi32(quotient, quotient);
            quotient = _mm512_mask_add_epi8(quotient, ge, quotient, one);
        }

        remainder = _mm512_add_epi32(remainder, remainder);
        remainder = _mm512_or_epi32(remainder, dividend_bit2);

        {
            const __mmask64 ge = _mm512_cmpge_epu8_mask(remainder, divisor);
            remainder = _mm512_mask_sub_epi8(remainder, ge, remainder, divisor);
            quotient = _mm512_add_epi32(quotient, quotient);
            quotient = _mm512_mask_add_epi8(quotient, ge, quotient, one);
        }

        remainder = _mm512_add_epi32(remainder, remainder);
        remainder = _mm512_or_epi32(remainder, dividend_bit1);

        {
            const __mmask64 ge = _mm512_cmpge_epu8_mask(remainder, divisor);
            remainder = _mm512_mask_sub_epi8(remainder, ge, remainder, divisor);
            quotient = _mm512_add_epi32(quotient, quotient);
            quotient = _mm512_mask_add_epi8(quotient, ge, quotient, one);
        }

        remainder = _mm512_add_epi32(remainder, remainder);
        remainder = _mm512_or_epi32(remainder, dividend_bit0);


        {
            const __mmask64 ge = _mm512_cmpge_epu8_mask(remainder, divisor);
            remainder = _mm512_mask_sub_epi8(remainder, ge, remainder, divisor);
            quotient = _mm512_add_epi8(quotient, quotient);
            quotient = _mm512_mask_add_epi8(quotient, ge, quotient, one);
        }

        _mm512_storeu_si512((__m512*)&C[i], quotient);
    }
}

Experiment results

Short summary:

All benchmark programs were compiled with -O3 -march=native options on each machine separately.

Tested procedures
Procedure Comments
scalar plain 8-bit division
scalar (unrolled x 4) division unrolled manually 4 times
scalar (long division) scalar implementation of long division, with disabled autovectorization
scalar (long div, autovect) scalar implementation of long division, with autovectorization
SSE division with rounding
SSE (no rounding) division without rounding (dividend multiplied by 256)
SSE (cvtt) division followed by casting with truncation (CVTTPS2DQ)
SSE (rcp) multiplication by approximate reciprocal
SSE long div long division implemented with SSE instructions
AVX2 division with rounding
AVX2 (cvtt) division followed by casting with truncation (CVTTPS2DQ)
AVX2 (rcp) multiplication by approximate reciprocal
AVX2 long div long division implemented with AVX2 instructions
AVX512 (cvtt) division followed by casting with truncation (CVTTPS2DQ)
AVX512 (rcp) multiplication by approximate reciprocal
AVX512 long div long division implemented with AVX-512 instructions

Ryzen 7

  • Compiler: gcc (Debian 14.1.0-5) 14.1.0
  • CPU: AMD Ryzen 7 7730U with Radeon Graphics
procedure time in cycles per byte speed-up
  average best    
scalar 1.776 1.759 1.0 ███▌
scalar (unrolled x 4) 1.894 1.869 0.9 ███▍
scalar (long div) 5.715 5.520 0.3 █▏
scalar (long div, autovect) 0.427 0.417 4.2 ███████████████▎
SSE 0.374 0.368 4.8 █████████████████▎
SSE (no rounding) 0.356 0.332 5.3 ███████████████████▏
SSE (cvtt) 0.338 0.331 5.3 ███████████████████▏
SSE (rcp) 0.348 0.328 5.4 ███████████████████▍
SSE long div 0.753 0.738 2.4 ████████▌
AVX2 0.223 0.218 8.1 █████████████████████████████▏
AVX2 (cvtt) 0.232 0.222 7.9 ████████████████████████████▋
AVX2 (rcp) 0.220 0.216 8.1 █████████████████████████████▍
AVX2 (4x rcp) 0.162 0.159 11.1 ████████████████████████████████████████
AVX2 long div 0.390 0.376 4.7 ████████████████▉

Skylake-X

  • CPU: Intel(R) Xeon(R) W-2104 CPU @ 3.20GHz
  • Compiler: gcc (GCC) 11.2.0
procedure time in cycles per byte speed-up
  average best    
scalar 8.032 8.018 1.0 ██▉
scalar (unrolled x 4) 6.518 6.513 1.2 ███▌
scalar (long div) 18.882 18.784 0.4 █▏
scalar (long div, autovect) 1.008 1.003 8.0 ███████████████████████▎
SSE 1.209 1.195 6.7 ███████████████████▌
SSE (no rounding) 0.871 0.864 9.3 ███████████████████████████
SSE (cvtt) 0.912 0.905 8.9 █████████████████████████▊
SSE (rcp) 1.026 1.022 7.8 ██████████████████████▊
SSE long div 2.100 2.094 3.8 ███████████▏
AVX2 1.059 1.055 7.6 ██████████████████████▏
AVX2 (cvtt) 0.834 0.823 9.7 ████████████████████████████▍
AVX2 (rcp) 0.976 0.973 8.2 ████████████████████████
AVX2 (4x rcp) 0.589 0.584 13.7 ████████████████████████████████████████
AVX2 long div 1.077 1.070 7.5 █████████████████████▊
AVX512 (cvtt) 1.473 1.465 5.5 ███████████████▉
AVX512 (rcp) 1.194 1.187 6.8 ███████████████████▋
AVX512 (4x rcp) 0.687 0.682 11.8 ██████████████████████████████████▎
AVX512 long div 0.707 0.699 11.5 █████████████████████████████████▍

IceLake

  • Compiler: gcc (GCC) 13.3.1 20240611 (Red Hat 13.3.1-2)
  • CPU: Intel(R) Xeon(R) Gold 6338 CPU @ 2.00GHz
procedure time in cycles per byte speed-up
  average best    
scalar 6.069 6.011 1.0 █▋
scalar (unrolled x 4) 6.016 6.013 1.0 █▋
scalar (long div) 9.031 8.407 0.7 █▏
scalar (long div, autovect) 0.584 0.580 10.4 ██████████████████
SSE 0.587 0.579 10.4 ██████████████████
SSE (no rounding) 0.482 0.477 12.6 █████████████████████▉
SSE (cvtt) 0.476 0.474 12.7 ██████████████████████
SSE (rcp) 0.497 0.490 12.3 █████████████████████▎
SSE long div 1.246 1.238 4.9 ████████▍
AVX2 0.524 0.520 11.6 ████████████████████
AVX2 (cvtt) 0.437 0.432 13.9 ████████████████████████▏
AVX2 (rcp) 0.435 0.432 13.9 ████████████████████████▏
AVX2 (4x rcp) 0.288 0.286 21.0 ████████████████████████████████████▌
AVX2 long div 0.640 0.634 9.5 ████████████████▍
AVX512 (cvtt) 0.833 0.830 7.2 ████████████▌
AVX512 (rcp) 0.504 0.500 12.0 ████████████████████▉
AVX512 (4x rcp) 0.263 0.261 23.0 ████████████████████████████████████████
AVX512 long div 0.403 0.400 15.0 ██████████████████████████

See also

Source code

Sample implementation is available at GitHub.